Dynamic regulation of transcriptional states by chromatin and transcription factors

The interaction of regulatory proteins with the complex nucleoprotein structures that are found in mammalian cells involves chromatin reorganization at multiple levels. Mechanisms that support these transitions are complex on many timescales, which range from milliseconds to minutes or hours. In this Review, we discuss emerging concepts regarding the function of regulatory elements in living cells. We also explore the involvement of these dynamic and stochastic processes in the evolution of fluctuating transcriptional activity states that are now commonly reported in eukaryotic systems.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Chromatin information content landscapes inform transcription factor and DNA interactions

Article Open access 26 February 2021

Emerging insights into transcriptional condensates

Article Open access 25 April 2024

The spatial organization of transcriptional control

Article 14 September 2022

References

  1. Johnson, D. G. & Dent, S. Y. Chromatin: receiver and quarterback for cellular signals. Cell152, 685–689 (2013). CASPubMedPubMed CentralGoogle Scholar
  2. Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nature Rev. Genet.13, 469–483 (2012). CASPubMedGoogle Scholar
  3. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). CASGoogle Scholar
  4. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nature Rev. Genet.13, 613–626 (2012). CASPubMedGoogle Scholar
  5. Wu, W. et al. Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Res.21, 1659–1671 (2011). CASPubMedPubMed CentralGoogle Scholar
  6. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447, 425–432 (2007). CASPubMedGoogle Scholar
  7. Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genet.8, 263–271 (2007). CASPubMedGoogle Scholar
  8. Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell155, 39–55 (2013). CASPubMedGoogle Scholar
  9. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature489, 75–82 (2012). CASPubMedPubMed CentralGoogle Scholar
  10. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature482, 390–394 (2012). CASPubMedPubMed CentralGoogle Scholar
  11. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature489, 109–113 (2012). CASPubMedPubMed CentralGoogle Scholar
  12. Larson, D. R. What do expression dynamics tell us about the mechanism of transcription? Curr. Opin. Genet. Dev.21, 591–599 (2011). CASPubMedPubMed CentralGoogle Scholar
  13. Mellor, J. Dynamic nucleosomes and gene transcription. Trends Genet.22, 320–329 (2006). CASPubMedGoogle Scholar
  14. McNally, J. G., Mueller, W. G., Walker, D., Wolford, R. G. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science287, 1262–1265 (2000). This paper reports the first observation of site-specific factor binding to a regulatory element in living cells, which reveals rapid exchange dynamics.CASPubMedGoogle Scholar
  15. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet.6, 451–464 (2005). CASPubMedGoogle Scholar
  16. Coulon, A., Chow, C. C., Singer, R. H. & Larson, D. R. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nature Rev. Genet.14, 572–584 (2013). CASPubMedGoogle Scholar
  17. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell132, 311–322 (2008). CASPubMedPubMed CentralGoogle Scholar
  18. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genet.43, 264–268 (2011). CASPubMedGoogle Scholar
  19. Hoogenkamp, M. et al. Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood114, 299–309 (2009). CASPubMedPubMed CentralGoogle Scholar
  20. Siersbaek, R. et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J.30, 1459–1472 (2011). CASPubMedPubMed CentralGoogle Scholar
  21. Stamatoyannopoulos, J. A. et al. An encyclopedia of mouse DNA elements (mouse ENCODE). Genome Biol.13, 418 (2012). PubMedPubMed CentralGoogle Scholar
  22. Biddie, S. C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell43, 145–155 (2011). CASPubMedPubMed CentralGoogle Scholar
  23. Heintzman, N. D. & Ren, B. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev.19, 541–549 (2009). CASPubMedPubMed CentralGoogle Scholar
  24. Bosisio, D. et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J.25, 798–810 (2006). CASPubMedPubMed CentralGoogle Scholar
  25. Sharp, Z. D. et al. Estrogen-receptor-α exchange and chromatin dynamics are ligand-and domain-dependent. J. Cell Sci.119, 4101–4116 (2006). CASPubMedGoogle Scholar
  26. Yao, J., Munson, K. M., Webb, W. W. & Lis, J. T. Dynamics of heat shock factor association with native gene loci in living cells. Nature442, 1050–1053 (2006). CASPubMedGoogle Scholar
  27. Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-wide protein–DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature484, 251–255 (2012). CASPubMedPubMed CentralGoogle Scholar
  28. Kuipers, M. A. et al. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. J. Cell Biol.192, 29–41 (2011). CASPubMedPubMed CentralGoogle Scholar
  29. Stasevich, T. J. & McNally, J. G. Assembly of the transcription machinery: ordered and stable, random and dynamic, or both? Chromosoma120, 533–545 (2011). CASPubMedPubMed CentralGoogle Scholar
  30. Mueller, F., Mazza, D., Stasevich, T. J. & McNally, J. G. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol.22, 403–411 (2010). CASPubMedPubMed CentralGoogle Scholar
  31. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature489, 83–90 (2012). This study carries out an exhaustive characterization of DNaseI hypersensitive regions in human cell lines, which reveals the presence of many transcription factors by their footprints within the accessible region.CASPubMedPubMed CentralGoogle Scholar
  32. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell149, 1233–1244 (2012). This study finds that LIM domain-binding protein 1(LDB1)effects GATA1-mediated chromatin loop formation by long-range protein–protein interactions.CASPubMedPubMed CentralGoogle Scholar
  33. Stender, J. D. et al. Genome-wide analysis of estrogen receptor α DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol. Cell. Biol.30, 3943–3955 (2010). CASPubMedPubMed CentralGoogle Scholar
  34. Erdel, F., Krug, J., Langst, G. & Rippe, K. Targeting chromatin remodelers: signals and search mechanisms. Biochim. Biophys. Acta1809, 497–508 (2011). CASPubMedGoogle Scholar
  35. Cairns, B. R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nature Struct. Mol. Biol.14, 989–996 (2007). CASGoogle Scholar
  36. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem.78, 273–304 (2009). CASPubMedGoogle Scholar
  37. Glatt, S., Alfieri, C. & Muller, C. W. Recognizing and remodeling the nucleosome. Curr. Opin. Struct. Biol.21, 335–341 (2011). CASPubMedGoogle Scholar
  38. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res.21, 396–420 (2011). CASPubMedPubMed CentralGoogle Scholar
  39. Korber, P. & Becker, P. B. Nucleosome dynamics and epigenetic stability. Essays Biochem.48, 63–74 (2010). CASPubMedGoogle Scholar
  40. Miller, J. A. & Widom, J. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol.23, 1623–1632 (2003). CASPubMedPubMed CentralGoogle Scholar
  41. Mirny, L. A. Nucleosome-mediated cooperativity between transcription factors. Proc. Natl Acad. Sci. USA107, 22534–22539 (2010). CASPubMedPubMed CentralGoogle Scholar
  42. Teif, V. B., Ettig, R. & Rippe, K. A lattice model for transcription factor access to nucleosomal DNA. Biophys. J.99, 2597–2607 (2010). CASPubMedPubMed CentralGoogle Scholar
  43. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev.25, 2227–2241 (2011). CASPubMedPubMed CentralGoogle Scholar
  44. Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J. Biol. Chem.282, 35583–35593 (2007). CASPubMedGoogle Scholar
  45. Magnani, L., Eeckhoute, J. & Lupien, M. Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet.27, 465–474 (2011). CASPubMedGoogle Scholar
  46. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell132, 958–970 (2008). CASPubMedPubMed CentralGoogle Scholar
  47. Jozwik, K. M. & Carroll, J. S. Pioneer factors in hormone-dependent cancers. Nature Rev. Cancer12, 381–385 (2012). CASGoogle Scholar
  48. Cirillo, L. A. & Zaret, K. S. Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J. Mol. Biol.366, 720–724 (2007). In this study, FOXA1 is characterized as a pioneer protein through site-specific interactions with DNA.CASPubMedGoogle Scholar
  49. Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell14, 667–673 (2004). CASPubMedGoogle Scholar
  50. Boeger, H., Griesenbeck, J. & Kornberg, R. D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell133, 716–726 (2008). This paper presents nucleosome occupancy at the yeastPHO5locus as a dynamic equilibrium between multiple states.CASPubMedPubMed CentralGoogle Scholar
  51. Nagaich, A. K., Walker, D. A., Wolford, R. G. & Hager, G. L. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell14, 163–174 (2004). This study uses UV laser crosslinking to characterize dynamics of factor binding during chromatin remodelling.CASPubMedGoogle Scholar
  52. McKnight, J. N., Jenkins, K. R., Nodelman, I. M., Escobar, T. & Bowman, G. D. Extranucleosomal DNA binding directs nucleosome sliding by chd1. Mol. Cell. Biol.31, 4746–4759 (2011). This paper shows that nucleosome invasion of a factor-specific binding site, which is catalysed by a remodelling protein, displaces the binding complex from the site.CASPubMedPubMed CentralGoogle Scholar
  53. Kassabov, S. R., Henry, N. M., Zofall, M., Tsukiyama, T. & Bartholomew, B. High-resolution mapping of changes in histone–DNA contacts of nucleosomes remodeled by ISW2. Mol. Cell. Biol.22, 7524–7534 (2002). CASPubMedPubMed CentralGoogle Scholar
  54. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell146, 544–554 (2011). This study shows that two factors that bind to the same DNA recognition element fail to manifest competition in living cells, which leads to the hypothesis of dynamic assisted loading.CASPubMedPubMed CentralGoogle Scholar
  55. MacArthur, S. et al. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol.10, R80 (2009). PubMedPubMed CentralGoogle Scholar
  56. Moorman, C. et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl Acad. Sci. USA103, 12027–12032 (2006). This paper shows that theDrosophila melanogastergenome contains many hot spots that are targeted by multiple transcription factors.CASPubMedPubMed CentralGoogle Scholar
  57. Zinzen, R. P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E. E. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature462, 65–70 (2009). CASPubMedGoogle Scholar
  58. Farnham, P. J. Insights from genomic profiling of transcription factors. Nature Rev. Genet.10, 605–616 (2009). CASPubMedGoogle Scholar
  59. modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science330, 1787–1797 (2010).
  60. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol.16, 653–699 (2000). CASPubMedGoogle Scholar
  61. Rigaud, G., Roux, J., Pictet, R. & Grange, T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell67, 977–986 (1991). This paper shows that the glucocorticoid receptor induces binding of a liver transcription factor upstream of the tyrosine aminotransferase gene (Tat), even though the receptor and the liver factor compete for binding as pure proteins on naked DNA.CASPubMedGoogle Scholar
  62. Morris, S. A. et al. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nature Struct. Mol. Biol.http://dx.doi.org/10.1038/nsmb.2718 (2013).
  63. Hilfinger, A. & Paulsson, J. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Natl Acad. Sci. USA108, 12167–12172 (2011). CASPubMedPubMed CentralGoogle Scholar
  64. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA99, 12795–12800 (2002). CASPubMedPubMed CentralGoogle Scholar
  65. Harper, C. V. et al. Dynamic analysis of stochastic transcription cycles. PLoS. Biol.9, e1000607 (2011). CASPubMedPubMed CentralGoogle Scholar
  66. John, S. et al. Kinetic complexity of the global response to glucocorticoid receptor action. Endocrinology150, 1766–1774 (2009). CASPubMedPubMed CentralGoogle Scholar
  67. Voss, T. C., John, S. & Hager, G. L. Single cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription. Mol. Endocrinol.20, 2641–2655 (2006). CASPubMedGoogle Scholar
  68. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science297, 1183–1186 (2002). CASPubMedGoogle Scholar
  69. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science304, 1811–1814 (2004). CASPubMedPubMed CentralGoogle Scholar
  70. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet.8, 450–461 (2007). CASPubMedGoogle Scholar
  71. Yosef, N. & Regev, A. Impulse control: temporal dynamics in gene transcription. Cell144, 886–896 (2011). CASPubMedPubMed CentralGoogle Scholar
  72. Veldhuis, J. D., Keenan, D. M. & Pincus, S. M. Motivations and methods for analyzing pulsatile hormone secretion. Endocr. Rev.29, 823–864 (2008). CASPubMedPubMed CentralGoogle Scholar
  73. Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nature Cell Biol.11, 1093–1102 (2009). CASPubMedGoogle Scholar
  74. Stavreva, D. A., Varticovski, L. & Hager, G. L. Complex dynamics of transcription regulation. Biochim. Biophys. Acta1819, 657–666 (2012). CASPubMedPubMed CentralGoogle Scholar
  75. Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS. Genet.5, e1000442 (2009). PubMedPubMed CentralGoogle Scholar
  76. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA106, 21453–21458 (2009). CASPubMedPubMed CentralGoogle Scholar
  77. Ou, Q., Magico, A. & King-Jones, K. Nuclear receptor DHR4 controls the timing of steroid hormone pulses during Drosophila development. PLoS. Biol.9, e1001160 (2011). CASPubMedPubMed CentralGoogle Scholar
  78. Uhlendorf, J. et al. Long-term model predictive control of gene expression at the population and single-cell levels. Proc. Natl Acad. Sci. USA109, 14271–14276 (2012). CASPubMedPubMed CentralGoogle Scholar
  79. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev.210, 171–186 (2006). PubMedGoogle Scholar
  80. Sung, M. H. et al. Sustained oscillations of NF-κB produce distinct genome scanning and gene expression profiles. PLoS ONE4, e7163 (2009). PubMedPubMed CentralGoogle Scholar
  81. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science306, 704–708 (2004). CASPubMedGoogle Scholar
  82. Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nature Genet.36, 147–150 (2004). This study shows that p53 is expressed in discrete pulses after DNA damage and that the number, but not the size, of pulses increases with the extent of DNA damage.CASPubMedGoogle Scholar
  83. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science324, 242–246 (2009). CASPubMedPubMed CentralGoogle Scholar
  84. Purvis, J. E. et al. p53 dynamics control cell fate. Science336, 1440–1444 (2012). CASPubMedPubMed CentralGoogle Scholar
  85. Bratsun, D., Volfson, D., Tsimring, L. S. & Hasty, J. Delay-induced stochastic oscillations in gene regulation. Proc. Natl Acad. Sci. USA102, 14593–14598 (2005). CASPubMedPubMed CentralGoogle Scholar
  86. Cai, L., Dalal, C. K. & Elowitz, M. B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature455, 485–490 (2008). CASPubMedPubMed CentralGoogle Scholar
  87. Hao, N. & O'Shea, E. K. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nature Struct. Mol. Biol.19, 31–39 (2012). CASGoogle Scholar
  88. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature422, 633–637 (2003). CASPubMedGoogle Scholar
  89. Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell116, 683–698 (2004). CASPubMedPubMed CentralGoogle Scholar
  90. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell123, 1025–1036 (2005). CASPubMedGoogle Scholar
  91. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol.16, 1018–1025 (2006). CASPubMedPubMed CentralGoogle Scholar
  92. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS. Biol.4, e309 (2006). PubMedPubMed CentralGoogle Scholar
  93. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nature Struct. Mol. Biol.14, 796–806 (2007). CASGoogle Scholar
  94. Suter, D. M., Molina, N., Naef, F. & Schibler, U. Origins and consequences of transcriptional discontinuity. Curr. Opin. Cell Biol.23, 657–662 (2011). CASPubMedGoogle Scholar
  95. Wilkinson, D. J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nature Rev. Genet.10, 122–133 (2009). CASPubMedGoogle Scholar
  96. Kim, H. D., Shay, T., O'Shea, E. K. & Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science325, 429–432 (2009). CASPubMedPubMed CentralGoogle Scholar
  97. Ko, M. S., Nakauchi, H. & Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J.9, 2835–2842 (1990). This paper shows that induction of gene expression by the glucocorticoid receptor results from increases in the frequency of active templates but not from the extent of transcription from each template.CASPubMedPubMed CentralGoogle Scholar
  98. Archer, T. K. et al. Differential steroid hormone induction of transcription from the mouse mammary tumor virus promoter. Mol. Endocrinol.8, 568–576 (1994). CASPubMedGoogle Scholar
  99. Becker, M. et al. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep.3, 1188–1194 (2002). CASPubMedPubMed CentralGoogle Scholar
  100. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell103, 843–852 (2000). CASPubMedGoogle Scholar
  101. Metivier, R. et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell115, 751–763 (2003). CASPubMedGoogle Scholar
  102. Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell145, 622–634 (2011). CASPubMedPubMed CentralGoogle Scholar
  103. Karpova, T. S. et al. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science319, 466–469 (2008). CASPubMedGoogle Scholar
  104. Magklara, A. et al. An epigenetic signature for monoallelic olfactory receptor expression. Cell145, 555–570 (2011). CASPubMedPubMed CentralGoogle Scholar
  105. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science332, 472–474 (2011). This study expresses a luciferase protein that is detected by bioluminescence in single cells, which reveals bursting kinetics that is characterized by refractory and active periods.CASPubMedGoogle Scholar
  106. Voss, T. C. et al. Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity. J. Cell. Sci.122, 345–356 (2009). CASPubMedPubMed CentralGoogle Scholar
  107. McFerran, D. W. et al. Persistent synchronized oscillations in prolactin gene promoter activity in living pituitary cells. Endocrinology142, 3255–3260 (2001). CASPubMedGoogle Scholar
  108. Shorte, S. L. et al. PRL gene expression in individual living mammotropes displays distinct functional pulses that oscillate in a noncircadian temporal pattern. Endocrinology143, 1126–1133 (2002). CASPubMedGoogle Scholar
  109. Berno, V. et al. Activation of estrogen receptor-α by E2 or EGF induces temporally distinct patterns of large-scale chromatin modification and mRNA transcription. PLoS ONE.3, e2286 (2008). PubMedPubMed CentralGoogle Scholar
  110. So, L. H. et al. General properties of transcriptional time series in Escherichia coli. Nature Genet.43, 554–560 (2011). CASPubMedGoogle Scholar
  111. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nature Methods7, 377–381 (2010). CASPubMedPubMed CentralGoogle Scholar
  112. Brown, C. M. et al. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc.229, 78–91 (2008). CASPubMedPubMed CentralGoogle Scholar
  113. Digman, M. A., Dalal, R., Horwitz, A. F. & Gratton, E. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J.94, 2320–2332 (2008). CASPubMedGoogle Scholar
  114. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nature Methods8, 969–975 (2011). CASPubMedPubMed CentralGoogle Scholar
  115. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods4, 651–657 (2007). CASPubMedGoogle Scholar
  116. Lickwar, C. R., Mueller, F. & Lieb, J. D. Genome-wide measurement of protein–DNA binding dynamics using competition ChIP. Nature Protoc.8, 1337–1353 (2013). Google Scholar
  117. Hockensmith, J. W., Kubasek, W. L., Vorachek, W. R., Evertsz, E. M. & von Hippel, P. H. Laser cross-linking of protein–nucleic acid complexes. Methods Enzymol.208, 211–236 (1991). CASPubMedGoogle Scholar
  118. Nagaich, A. K. & Hager, G. L. UV laser cross-linking: a real-time assay to study dynamic protein/DNA interactions during chromatin remodeling. Sci. STKE256, L13 (2004). Google Scholar
  119. Becker, P. B., Ruppert, S. & Schutz, G. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell51, 435–443 (1987). CASPubMedGoogle Scholar
  120. Koster, M., Frahm, T. & Hauser, H. Nucleocytoplasmic shuttling revealed by FRAP and FLIP technologies. Curr. Opin. Biotechnol.16, 28–34 (2005). PubMedGoogle Scholar
  121. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res.40, e119 (2012). CASPubMedPubMed CentralGoogle Scholar
  122. Sun, Y., Hays, N. M., Periasamy, A., Davidson, M. W. & Day, R. N. Monitoring protein interactions in living cells with fluorescence lifetime imaging microscopy. Methods Enzymol.504, 371–391 (2012). CASPubMedPubMed CentralGoogle Scholar
  123. Mazza, D., Ganguly, S. & McNally, J. G. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol. Biol.1042, 117–137 (2013). CASPubMedGoogle Scholar
  124. Bustamante, C., Cheng, W. & Mejia, Y. X. Revisiting the central dogma one molecule at a time. Cell144, 480–497 (2011). CASPubMedPubMed CentralGoogle Scholar

Acknowledgements

The authors acknowledge careful reading of the manuscript and numerous suggestions by L. Grontved and D. Pressman, the US National Institutes of Health.